TRANSFORMATION OF A SYSTEM OF DIFFERENTIAL
EQUATIONS OF HEAT AND MASS TRANSFER IN A
DOMAIN WITH A VARIABLE BOUNDARY INTO A
SYSTEM OF EQUATIONS FOR A DOMAIN WITH

A FIXED BOUNDARY
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We present a method for transforming a system of differential equations of heat and mass t{ransfer
in a region with a variable boundary into an equivalent system of equations for a region with a
fixed boundary.

The transport system of differential equations, together with its boundary conditions, represents in ana-
_lytical form the basic features of the phenomena studied.

Solutions of the system enable us fo obtain a picture of the distribution of transfer potentials in a body or
system of bodies, to follow the variation of the fields of these potentials with time, and, based on this, to give
a detailed analysis of the kinetics and the dynamics of the process involved.

A dimensionless mathematical model of heat and mass transfer is of the form
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Analytical solutions of this system are presented in considerable detail in [1]. The heat- and mass-trans-
fer problems treated in [1] involved bodies whose dimensions stayed the same as the process proceeded.

Besides these problems there are a number of engineering problems of heat and mass transfer in which
the dimensions of the bodies vary. Thus, in the process of drying, a change is observed in the linear dimen-
sions of a body, wherein, subject to small gradients in moisture content and temperature, there is a shrinkage
of the material in accordance with a linear behavior; in more rigid drying modes, however, large gradients of
moisture content and temperature arise in a material and the resulting shrinkage follows a much more involved
nonlinear variation.

There are also heat-conduction problems in which it is necessary to account for the change in the linear
dimensions of a body. Thus, there are problems involving a phase transition, i.e., problems involving moving
boundaries, for example, Stefan problems.

We present here a method for solving a system of differential equations of heat and mass transfer with
expanding or contracting boundaries.

In the system (1) let x€ [R(F0), <), where R(Fo) is a known function which defines the way the surface is
being displaced; we assume this function to be continuous and fo have continuous first and second derivatives.
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As was shown in [3], the system (1) can be reduced to a system of two equations, similar in form to the thermal-
conductivity equation for a combination function Z;:

az, 1 ( *Z, r o9z @)
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where Z; = m;T(x, Fo) +n;0(x, Fo)(i =1, 2), and the numbers p; are obtained from the expressions
L (1 i PnKo* + —1~)+(—-1)f / 1+PnKo*+n—l———2~——4~ .
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The dimensionless numbers m; and n; will be completely defined if we put nj = 1, since
m,  Pn
n, w1 )

We can apply Grinberg's method (see [2]) to the equations of the system (2).

We put y = x/R(Fo), where y€ [1, ©). This transformation transforms the varying domain [B(Fo), =) to
the fixed domain [1, »). The system (2) then assumes the form

9z, 0z, Ry , 1 0*Z; . r 9z
dFo oy R = MR ’
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where R = R(Fo), R = dR(Fo)/dFo. By making the substitution
Z;(y: Fo)=g,(y, Fo)-V;(y, Fo)

3

we go from the system of equations (3), containing the derivative of the unknown function with a coefficient de~
pending on the time and a coordinate, to equations in the new functions Vi{y, Fo) not containing this term. Af-
ter a substitution and some simplifications (see [2]), we obtain
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The equations appearing in the system (4) can be solved in the case when R3R = counst, i.e., when the mo~
tion of the boundary follows the law

R(Fo)= VYV MFo*+ NFo+ P, (6)
where M, N, and P are constants,

Consequently, the corresponding boundary-value problem for the initial system (1) may be solved for
domains of this form but with dimensions varying in accordance with the law indicated. In particular, if RR =
0, i.e., if the boundary of the domain moves in accordance with the linear law

R(Fo)=AFo -+ B, Y8
where A and B are constants, we obtain the system
o, r v, o pz Vs
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The expressions (8) and (4) are similarto the thermal-conductivity equation in whichthe coeffficient of thermal
conductivity is time dependent.

Through the substitution d7 = dFo/R?(Fo) such equations may, as is well known, be reduced to the thermal-
conductivity equation witha constant coefficient of thermal conductivity, solution methods for whichare known.

Transformation of Egs. (1) and (2) for the case in which x€[0, R(Fo)] again leads to the system (3) for the
domain y€[0, 1]. The subsequent considerations apply then to this case also.
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The laws describing the motion of the domain boundary, given by the relations (6) and (7), encompass
a sufficiently broad collection of engineering heat- and mass-transfer problems.

It should be remarked that we can also apply the method in question to the system (1), wherein the latter
is augmented by heat and matter sources; we can also apply it to a system containing, not two, but n transfer
potentials,

NOTATION
T is the temperature;
0 is the moisture content;
Fo is the Fourier number;

Ko, Ly, Pn are the Kossovich, Lykov, and Posnov numbers, respectively;
Ko* = ¢eKo, where ¢is the factor of phase transition of a liquid into a vapor;
I"=0, 1, 2 for a plate, cylinder, and sphere, respectively.
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NUMERICAL ALGORITHM OF THE SOLUTION OF THE
MULTIPHASE STEFAN PROBLEM

E. G. Palagin UDC 536.24.02

A method is proposed for computing the temperature and position of the phase interface based
on the passage to new variables and a new function. The transformation is invariant relative to
the heat-conduction equation, and the boundaries in the new variables are fixed.

A whole series of papers on the Stefan problem exist, which are surveyed sufficiently completely in [1],
and wherein a great deal of original material associated with the proof of the uniqueness and existence of the
solution is also generalized. Numerical schemes for the solution are proposed in [2]. Significant attention is
paid there to the mathematical aspect of the question, but no results are presented of practical tests or of com-
putations. V. G. Melamed [3] also gave a numerical solution, realized in application to the case of freezing
soils. Fundamental results of a cycle of the author's work are presented in [3]. An analogous problem in
terms of physical content, but taking account of snow and the influence of the atmosphere, is considered in [4].
Let us note that the nature of the method of solution to be used is determined by the specifics of some definite
problem to be solved, which is a particular case of the general Stefan problem. The present paper, which is
oriented toward the hydrometeorology area from the viewpoint of practical applications, is organized in a
similar plan,

We formulate the problem below. Let us examine the one-dimensional case. Between two fixed planes
z=0and z = H at a time t = 0 let there be n alternating layers of material in the liguid or solid aggregate state
with the moving interfaces z =hpy) m =1, 2, ..., n—1), where phase transition occurs. Let one layer of
another material whose outer boundary moves according to the known law z =—I(t) also adjoin the surface z=0. The
initial temperature distribution is given in the whole domain T%z). Let us consider the temperature a known
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